Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 19(4): 1277-1292, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36131358

RESUMO

How macroautophagy/autophagy influences neurofilament (NF) proteins in neurons, a frequent target in neurodegenerative diseases and injury, is not known. NFs in axons have exceptionally long half-lives in vivo enabling formation of large stable supporting networks, but they can be rapidly degraded during Wallerian degeneration initiated by a limited calpain cleavage. Here, we identify autophagy as a previously unrecognized pathway for NF subunit protein degradation that modulates constitutive and inducible NF turnover in vivo. Levels of NEFL/NF-L, NEFM/NF-M, and NEFH/NF-H subunits rise substantially in neuroblastoma (N2a) cells after blocking autophagy either with the phosphatidylinositol 3-kinase (PtdIns3K) inhibitor 3-methyladenine (3-MA), by depleting ATG5 expression with shRNA, or by using both treatments. In contrast, activating autophagy with rapamycin significantly lowers NF levels in N2a cells. In the mouse brain, NF subunit levels increase in vivo after intracerebroventricular infusion of 3-MA. Furthermore, using tomographic confocal microscopy, immunoelectron microscopy, and biochemical fractionation, we demonstrate the presence of NF proteins intra-lumenally within autophagosomes (APs), autolysosomes (ALs), and lysosomes (LYs). Our findings establish a prominent role for autophagy in NF proteolysis. Autophagy may regulate axon cytoskeleton size and responses of the NF cytoskeleton to injury and disease.


Assuntos
Autofagia , Filamentos Intermediários , Camundongos , Animais , Autofagia/fisiologia , Proteólise , Filamentos Intermediários/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neurônios/metabolismo
2.
Nat Commun ; 13(1): 5308, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130946

RESUMO

The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration. We also report on the results of an exploratory (hypothesis-generating) phase 2a randomized double-blind 16-week placebo-controlled clinical trial (Clinical trial registration: NCT04001517/EudraCT #2019-001566-15) of neflamapimod in mild-to-moderate dementia with Lewy bodies (DLB), a disease in which BFCN degeneration is an important driver of disease expression. A total of 91 participants, all receiving background cholinesterase inhibitor therapy, were randomized 1:1 between neflamapimod 40 mg or matching placebo capsules (taken orally twice-daily if weight <80 kg or thrice-daily if weight >80 kg). Neflamapimod does not show an effect in the clinical study on the primary endpoint, a cognitive-test battery. On two secondary endpoints, a measure of functional mobility and a dementia rating-scale, improvements were seen that are consistent with an effect on BFCN function. Neflamapimod treatment is well-tolerated with no study drug associated treatment discontinuations. The combined preclinical and clinical observations inform on the validity of the Rab5-based pathogenic model of cholinergic degeneration and provide a foundation for confirmatory (hypothesis-testing) clinical evaluation of neflamapimod in DLB.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Doença de Alzheimer/metabolismo , Animais , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Inibidores da Colinesterase/metabolismo , Método Duplo-Cego , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Nat Neurosci ; 25(6): 688-701, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654956

RESUMO

Autophagy is markedly impaired in Alzheimer's disease (AD). Here we reveal unique autophagy dysregulation within neurons in five AD mouse models in vivo and identify its basis using a neuron-specific transgenic mRFP-eGFP-LC3 probe of autophagy and pH, multiplex confocal imaging and correlative light electron microscopy. Autolysosome acidification declines in neurons well before extracellular amyloid deposition, associated with markedly lowered vATPase activity and build-up of Aß/APP-ßCTF selectively within enlarged de-acidified autolysosomes. In more compromised yet still intact neurons, profuse Aß-positive autophagic vacuoles (AVs) pack into large membrane blebs forming flower-like perikaryal rosettes. This unique pattern, termed PANTHOS (poisonous anthos (flower)), is also present in AD brains. Additional AVs coalesce into peri-nuclear networks of membrane tubules where fibrillar ß-amyloid accumulates intraluminally. Lysosomal membrane permeabilization, cathepsin release and lysosomal cell death ensue, accompanied by microglial invasion. Quantitative analyses confirm that individual neurons exhibiting PANTHOS are the principal source of senile plaques in amyloid precursor protein AD models.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Placa Amiloide/metabolismo
4.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563142

RESUMO

Nowadays, the structural complexity of dyes used in the textile industry and the widely adopted water-saving strategy in the dyeing processes often fail plants' biological wastewater treatment units due to chemical oxygen demand (COD) overload. To alleviate this problems, this study investigated a regenerable adsorption-oxidation process to treat dyeing wastewater with COD around 10,000 mg/dm3 using a highly nano-pored activated carbon (AC) as a COD adsorbent, followed by its regeneration using hydrogen peroxide as an oxidizing reagent. In addition to studying AC's COD adsorption and oxidation performance, its operational treatment conditions in terms of temperature and pH were assessed. The results firstly demonstrated that about 50-60% of the COD was consistently adsorbed during the repeated adsorption operation before reaching AC's maximum adsorption capacity (qmax) of 0.165 g-COD/g-AC. The optimal pH and temperature during adsorption were 4.7 and 25 °C, respectively. Secondly, AC regeneration was accomplished by using an initial peroxide concentration of 2.5% (by wt %) and EDTA-Fe of 2.12 mmole/dm3. The reuse of the regenerated ACs was doable. Surprisingly, after the first AC regeneration, the COD adsorption capacity of the regenerated AC even increased by ~7% with respect to the virgin AC. Thirdly, the results of a five-consecutive adsorption-regeneration operation showed that a total of 0.3625 g COD was removed by the 5 g AC used, which was equivalent to an adsorption capacity (q) of 0.0725 (= 0.3625/5) g-COD/g-AC during each adsorption stage. Based on the obtained results, a regenerable COD adsorption-oxidation process using a nano-pored AC to treat the high-textile-COD wastewater looks promising. Thus, a conceptual treatment unit was proposed, and its potential benefits and limitations were addressed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Análise da Demanda Biológica de Oxigênio , Carvão Vegetal/química , Corantes , Oxirredução , Eliminação de Resíduos Líquidos/métodos
5.
Cell Rep ; 35(4): 109034, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910020

RESUMO

Lysosomal trafficking and maturation in neurons remain poorly understood and are unstudied in vivo despite high disease relevance. We generated neuron-specific transgenic mice to track vesicular CTSD acquisition, acidification, and traffic within the autophagic-lysosomal pathway in vivo, revealing that mature lysosomes are restricted from axons. Moreover, TGN-derived transport carriers (TCs), not lysosomes, supply lysosomal components to axonal organelles. Ultrastructurally distinctive TCs containing TGN and lysosomal markers enter axons, engaging autophagic vacuoles and late endosomes. This process is markedly upregulated in dystrophic axons of Alzheimer models. In cultured neurons, most axonal LAMP1 vesicles are weakly acidic TCs that shuttle lysosomal components bidirectionally, conferring limited degradative capability to retrograde organelles before they mature fully to lysosomes within perikarya. The minor LAMP1 subpopulation attaining robust acidification are retrograde Rab7+ endosomes/amphisomes, not lysosomes. Restricted lysosome entry into axons explains the unique lysosome distribution in neurons and their vulnerability toward neuritic dystrophy in disease.


Assuntos
Axônios/metabolismo , Complexo de Golgi/metabolismo , Organelas/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
6.
Autophagy ; 15(3): 543-557, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30269645

RESUMO

Autophagy-lysosome pathway (ALP) disruption is considered pathogenic in multiple neurodegenerative diseases; however, current methods are inadequate to investigate macroautophagy/autophagy flux in brain in vivo and its therapeutic modulation. Here, we describe a novel autophagy reporter mouse (TRGL6) stably expressing a dual-fluorescence-tagged LC3 (tfLC3, mRFP-eGFP-LC3) by transgenesis selectively in neurons. The tfLC3 probe distributes widely in the central nervous system, including spinal cord. Expression levels were similar to endogenous LC3 and induced no detectable ALP changes. This ratiometric reporter registers differential pH-dependent changes in color as autophagosomes form, fuse with lysosomes, acidify, and degrade substrates within autolysosomes. We confirmed predicted changes in neuronal autophagy flux following specific experimental ALP perturbations. Furthermore, using a third fluorescence label in TRGL6 brains to identify lysosomes by immunocytochemistry, we validated a novel procedure to detect defective autolysosomal acidification in vivo. Thus, TRGL6 mice represent a unique tool to investigate in vivo ALP dynamics in specific neuron populations in relation to neurological diseases, aging, and disease modifying agents. Abbreviations: ACTB: actin, beta; AD: Alzheimer disease; AL: autolysosomes; ALP: autophagy-lysosome pathway; AP: autophagosome; APP: amyloid beta (Abeta) precursor protein; ATG5: autophagy related 5; ATG7: autophagy related 7; AV: autophagic vacuoles; CNS: central nervous system; CTSD: cathepsin D; CQ: chloroquine; DMEM: Dulbecco's modified Eagle's medium; GFP: green fluorescent protein; GABARAP: gamma-aminobutyric acid receptor associated protein; GABARAPL2/GATE16: gamma-aminobutyric acid (GABA) receptor-associated protein-like 2; ICC: immunocytochemistry; ICV: intra-cerebroventricular; LAMP2: lysosomal-associated membrane protein 2; Leup: leupeptin; LY: lysosomes; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; RFP: red fluorescent protein; RPS6KB1: ribosomal protein S6 kinase, polypeptide 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SQSTM1: sequestosome 1; tfLC3: mRFP-eGFP-LC3; TRGL6: Thy1 mRFP eGFP LC3-line 6; PCR: polymerase chain reaction; PD: Parkinson disease.


Assuntos
Autofagia , Encéfalo/metabolismo , Lisossomos/química , Proteínas Associadas aos Microtúbulos/genética , Neurônios/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Encéfalo/citologia , Química Encefálica , Células Cultivadas , Cloroquina/farmacologia , Corantes Fluorescentes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Morfolinas/farmacologia , Neurônios/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteína Vermelha Fluorescente
7.
Hum Mol Genet ; 26(5): 843-859, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062666

RESUMO

2-hydroxypropyl-ß-cyclodextrin (CYCLO), a modifier of cholesterol efflux from cellular membrane and endo-lysosomal compartments, reduces lysosomal lipid accumulations and has therapeutic effects in animal models of Niemann-Pick disease type C and several other neurodegenerative states. Here, we investigated CYCLO effects on autophagy in wild-type mice and TgCRND8 mice-an Alzheimer's Disease (AD) model exhibiting ß-amyloidosis, neuronal autophagy deficits leading to protein and lipid accumulation within greatly enlarged autolysosomes. A 14-day intracerebroventricular administration of CYCLO to 8-month-old TgCRND8 mice that exhibit moderately advanced neuropathology markedly diminished the sizes of enlarged autolysosomes and lowered their content of GM2 ganglioside and Aß-immunoreactivity without detectably altering amyloid precursor protein processing or extracellular Aß/ß-amyloid burden. We identified two major actions of CYCLO on autophagy underlying amelioration of lysosomal pathology. First, CYCLO stimulated lysosomal proteolytic activity by increasing cathepsin D activity, levels of cathepsins B and D and two proteins known to interact with cathepsin D, NPC1 and ABCA1. Second, CYCLO impeded autophagosome-lysosome fusion as evidenced by the accumulation of LC3, SQSTM1/p62, and ubiquitinated substrates in an expanded population of autophagosomes in the absence of greater autophagy induction. By slowing substrate delivery to lysosomes, autophagosome maturational delay, as further confirmed by our in vitro studies, may relieve lysosomal stress due to accumulated substrates. These findings provide in vivo evidence for lysosomal enhancing properties of CYCLO, but caution that prolonged interference with cellular membrane fusion/autophagosome maturation could have unfavorable consequences, which might require careful optimization of dosage and dosing schedules.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amiloidose/tratamento farmacológico , Ciclodextrinas/administração & dosagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Amiloidose/metabolismo , Animais , Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia
8.
Brain ; 137(Pt 12): 3300-18, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25270989

RESUMO

Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer's disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B inhibition on lysosomal proteases suggests that enhancing lysosomal proteolysis improves the overall environment of the lysosome and its clearance functions, which may be possibly relevant to a broader range of lysosomal disorders beyond Alzheimer's disease.


Assuntos
Autofagia/fisiologia , Encéfalo/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lisossomos/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Animais , Autofagia/genética , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Proteólise
9.
Nano Lett ; 14(9): 5110-7, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25115676

RESUMO

Defective autophagy in Alzheimer's disease (AD) promotes disease progression in diverse ways. Here, we demonstrate impaired autophagy flux in primary glial cells derived from CRND8 mice that overexpress mutant amyloid precursor protein (APP). Functionalized single-walled carbon nanotubes (SWNT) restored normal autophagy by reversing abnormal activation of mTOR signaling and deficits in lysosomal proteolysis, thereby facilitating elimination of autophagic substrates. These findings suggest SWNT as a novel neuroprotective approach to AD therapy.


Assuntos
Doença de Alzheimer/terapia , Lisossomos/química , Nanotubos de Carbono/química , Neuroglia/citologia , Neuroglia/patologia , Animais , Autofagia , Materiais Biocompatíveis/química , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Nanotecnologia/métodos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-22983160

RESUMO

Autophagy is implicated in the pathogenesis of major neurodegenerative disorders although concepts about how it influences these diseases are still evolving. Once proposed to be mainly an alternative cell death pathway, autophagy is now widely viewed as both a vital homeostatic mechanism in healthy cells and as an important cytoprotective response mobilized in the face of aging- and disease-related metabolic challenges. In Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and other diseases, impairment at different stages of autophagy leads to the buildup of pathogenic proteins and damaged organelles, while defeating autophagy's crucial prosurvival and antiapoptotic effects on neurons. The differences in the location of defects within the autophagy pathway and their molecular basis influence the pattern and pace of neuronal cell death in the various neurological disorders. Future therapeutic strategies for these disorders will be guided in part by understanding the manifold impact of autophagy disruption on neurodegenerative diseases.


Assuntos
Autofagia/fisiologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Apoptose/fisiologia , Humanos
11.
J Neurochem ; 121(4): 649-61, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22372857

RESUMO

GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Gangliosídeo G(M2)/biossíntese , Degeneração Neural/metabolismo , Animais , Western Blotting , Encéfalo/patologia , Química Encefálica/efeitos dos fármacos , Caspase 3/metabolismo , Citocromos c/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Ativação Enzimática/fisiologia , Imuno-Histoquímica , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Mitocôndrias/metabolismo , Degeneração Neural/patologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
12.
Autophagy ; 7(7): 788-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21464620

RESUMO

The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-ß peptide (Aß) accumulation, extracellular ß-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aß, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aß40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aß clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Autofagia , Lisossomos/metabolismo , Processamento de Proteína Pós-Traducional , Doença de Alzheimer/fisiopatologia , Amiloide/metabolismo , Animais , Cistatina B/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Memória , Camundongos , Camundongos Transgênicos
13.
Neurobiol Dis ; 43(1): 38-45, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21296668

RESUMO

Autophagy, the major degradative pathway for organelles and long-lived proteins, is essential for the survival of neurons. Mounting evidence has implicated defective autophagy in the pathogenesis of several major neurodegenerative diseases, particularly Alzheimer's disease (AD). A continuum of abnormalities of the lysosomal system has been identified in neurons of the AD brain, including pathological endocytic pathway responses at the very earliest disease stage and a progressive disruption of autophagy leading to the massive buildup of incompletely digested substrates within dystrophic axons and dendrites. In this review, we examine research on autophagy in AD and evaluate evidence addressing the specific step or steps along the autophagy pathway that may be defective. Current evidence strongly points to disruption of substrate proteolysis within autolysosomes for the principal mechanism underlying autophagy failure in AD. In the most common form of familial early onset AD, mutant presenilin 1 disrupts autophagy directly by impeding lysosomal proteolysis while, in other forms of AD, autophagy impairments may involve different genetic or environmental factors. Attempts to restore more normal lysosomal proteolysis and autophagy efficiency in mouse models of AD pathology have yielded promising therapeutic effects on neuronal function and cognitive performance, demonstrating the relevance of autophagy failure to the pathogenesis of AD and the potential of autophagy modulation as a therapeutic strategy. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."


Assuntos
Doença de Alzheimer/patologia , Autofagia/fisiologia , Neurônios/patologia , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Lisossomos/metabolismo , Lisossomos/fisiologia , Vias Neurais/enzimologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Neurônios/enzimologia , Neurônios/metabolismo , Proteólise
14.
Brain ; 134(Pt 1): 258-77, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21186265

RESUMO

Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-ß peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-ß peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-ß peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-ß peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-ß peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Autofagia/fisiologia , Encéfalo/patologia , Transtornos da Memória/fisiopatologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Condicionamento Psicológico , Ensaio de Imunoadsorção Enzimática , Medo , Habituação Psicofisiológica , Imuno-Histoquímica , Lisossomos/metabolismo , Lisossomos/patologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia
15.
Neurobiol Aging ; 32(11): 2016-29, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20031277

RESUMO

Cytoskeletal protein phosphorylation is frequently altered in neuropathologic states but little is known about changes during normal aging. Here we report that declining protein phosphatase activity, rather than activation of kinases, underlies aging-related neurofilament hyperphosphorylation. Purified PP2A or PP2B dephosphorylated the heavy neurofilament (NFH) subunit or its extensively phorphorylated carboxyl-terminal domain in vitro. In cultured primary hippocampal neurons, inhibiting either phosphatase induced NFH phosphorylation without activating known neurofilament kinases. Neurofilament phosphorylation in the mouse CNS, as reflected by levels of the RT-97 phosphoepitope associated with late axon maturation, more than doubled during the 12-month period after NFH expression plateaued at p21. This was accompanied by declines in levels and activity of PP2A but not PP2B, and no rise in activities of neurofilament kinases (Erk1,2, cdk5 and JNK1,2). Inhibiting PP2A in mice in vivo restored brain RT-97 to levels seen in young mice. Declining PP2A activity, therefore, can account for rising neurofilament phosphorylation in maturing brain, potentially compounding similar changes associated with adult-onset neurodegenerative diseases.


Assuntos
Envelhecimento/metabolismo , Citoesqueleto/metabolismo , Neurônios/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Axônios/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Quinase 5 Dependente de Ciclina/metabolismo , Camundongos , Neurônios/citologia , Fosforilação/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo
16.
Methods Enzymol ; 453: 111-44, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19216904

RESUMO

This chapter describes detailed methods to monitor autophagy in neurodegenerative disorders, especially in Alzheimer's disease. Strategies to assess the competence of autophagy-related mechanisms in disease states ideally incorporate analyses of human disease and control tissues, which may include brain, fibroblasts, or other peripheral cells, in addition to animal and cell models of the neurodegenerative disease pathology and pathobiology. Cross-validation of pathophysiological mechanisms in the diseased tissues is always critical. Because of the cellular heterogeneity of the brain and the differential vulnerability of the neural cells in a given disease state, analyses focus on regional comparisons of affected and unaffected regions or cell populations within a particular brain region and include ultrastructural, immunological, and cell and molecular biological approaches.


Assuntos
Doença de Alzheimer/metabolismo , Autofagia/fisiologia , Doenças Neurodegenerativas/metabolismo , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica
17.
J Neurosci ; 28(47): 12241-54, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19020018

RESUMO

Increased activity of calpains is implicated in synaptic dysfunction and neurodegeneration in Alzheimer's disease (AD). The molecular mechanisms responsible for increased calpain activity in AD are not known. Here, we demonstrate that disease progression is propelled by a marked depletion of the endogenous calpain inhibitor, calpastatin (CAST), from AD neurons, which is mediated by caspase-1, caspase-3, and calpains. Initial CAST depletion focally along dendrites coincides topographically with calpain II and ERK 1/2 activation, tau cleavage by caspase-3, and tau and neurofilament hyperphosphorylation. These same changes, together with cytoskeletal proteolysis and neuronal cell death, accompany CAST depletion after intrahippocampal kainic acid administration to mice, and are substantially reduced in mice overexpressing human CAST. Moreover, CAST reduction by shRNA in neuronal cells causes calpain-mediated death at levels of calcium-induced injury that are sublethal to cells normally expressing CAST. Our results strongly support a novel hypothesis that CAST depletion by multiple abnormally activated proteases accelerates calpain dysregulation in AD leading to cytoskeleton disruption and neurodegeneration. CAST mimetics may, therefore, be neuroprotective in AD.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citoesqueleto/metabolismo , Degeneração Neural/etiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Calpaína/metabolismo , Estudos de Casos e Controles , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Transformada , Agonistas de Aminoácidos Excitatórios/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Hipocampo/efeitos dos fármacos , Humanos , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Mudanças Depois da Morte , RNA Interferente Pequeno/farmacologia , Transfecção/métodos
18.
Am J Pathol ; 173(3): 665-81, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18688038

RESUMO

Mechanisms of neuronal loss in Alzheimer's disease (AD) are poorly understood. Here we show that apoptosis is a major form of neuronal cell death in PS/APP mice modeling AD-like neurodegeneration. Pyknotic neurons in adult PS/APP mice exhibited apoptotic changes, including DNA fragmentation, caspase-3 activation, and caspase-cleaved alpha-spectrin generation, identical to developmental neuronal apoptosis in wild-type mice. Ultrastructural examination using immunogold cytochemistry confirmed that activated caspase-3-positive neurons also exhibited chromatin margination and condensation, chromatin balls, and nuclear membrane fragmentation. Numbers of apoptotic profiles in both cortex and hippocampus of PS/APP mice compared with age-matched controls were twofold to threefold higher at 6 months of age and eightfold higher at 21 to 26 months of age. Additional neurons undergoing dark cell degeneration exhibited none of these apoptotic features. Activated caspase-3 and caspase-3-cleaved spectrin were abundant in autophagic vacuoles, accumulating in dystrophic neurites of PS/APP mice similar to AD brains. Administration of the cysteine protease inhibitor, leupeptin, promoted accumulation of autophagic vacuoles containing activated caspase-3 in axons of PS/APP mice and, to a lesser extent, in those of wild-type mice, implying that this pro-apoptotic factor is degraded by autophagy. Leupeptin-induced autophagic impairment increased the number of apoptotic neurons in PS/APP mice. Our findings establish apoptosis as a mode of neuronal cell death in aging PS/APP mice and identify the cross talk between autophagy and apoptosis, which influences neuronal survival in AD-related neurodegeneration.


Assuntos
Doença de Alzheimer/patologia , Apoptose/fisiologia , Autofagia/fisiologia , Encéfalo/patologia , Neurônios/ultraestrutura , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Encéfalo/efeitos dos fármacos , Caspase 3/metabolismo , Inibidores de Cisteína Proteinase/administração & dosagem , Modelos Animais de Doenças , Ativação Enzimática/fisiologia , Feminino , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Injeções Intraventriculares , Leupeptinas/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Receptor Cross-Talk
19.
Autophagy ; 4(5): 590-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18497567

RESUMO

Neuronal survival requires continuous lysosomal turnover of cellular constituents delivered by autophagy and endocytosis. Primary lysosomal dysfunction in inherited congenital "lysosomal storage" disorders is well known to cause severe neurodegenerative phenotypes associated with accumulations of lysosomes and autophagic vacuoles (AVs). Recently, the number of inherited adult-onset neurodegenerative diseases caused by proteins that regulate protein sorting and degradation within the endocytic and autophagic pathways has grown considerably. In this Perspective, we classify a group of neurodegenerative diseases across the lifespan as disorders of lysosomal function, which feature extensive autophagic-endocytic-lysosomal neuropathology and may share mechanisms of neurodegeneration related to degradative failure and lysosomal destabilization. We highlight Alzheimer's disease as a disease within this group and discuss how each of the genes and other risk factors promoting this disease contribute to progressive lysosomal dysfunction and neuronal cell death.


Assuntos
Envelhecimento/patologia , Doenças por Armazenamento dos Lisossomos/etiologia , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Autofagia/genética , Autofagia/fisiologia , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/enzimologia , Lisossomos/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo
20.
J Biol Chem ; 277(31): 28135-42, 2002 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-12032140

RESUMO

Nicastrin is an integral component of the high molecular weight presenilin complexes that control proteolytic processing of the amyloid precursor protein and Notch. We report here that nicastrin is most probably a type 1 transmembrane glycoprotein that is expressed at moderate levels in the brain and in cultured neurons. Immunofluorescence studies demonstrate that nicastrin is localized in the endoplasmic reticulum, Golgi, and a discrete population of vesicles. Glycosidase analyses reveal that endogenous nicastrin undergoes a conventional, trafficking-dependent maturation process. However, when highly expressed in transfected cells, there is a disproportionate accumulation of the endo-beta-N-acetylglucosaminidase H-sensitive, immature form, with no significant increase in the levels of the fully mature species. Immunoprecipitation revealed that presenilin-1 interacts preferentially with mature nicastrin, suggesting that correct trafficking and co-localization of the presenilin complex components are essential for activity. These findings demonstrate that trafficking and post-translational modifications of nicastrin are tightly regulated processes that accompany the assembly of the active presenilin complexes that execute gamma-secretase cleavage. These results also underscore the caveat that simple overexpression of nicastrin in transfected cells may result in the accumulation of large amounts of the immature protein, which is apparently unable to assemble into the active complexes capable of processing amyloid precursor protein and Notch.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Cerebelo/fisiologia , Cães , Retículo Endoplasmático/metabolismo , Glicosídeo Hidrolases , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Rim , Camundongos , Neurônios/citologia , Presenilina-1 , Processamento de Proteína Pós-Traducional , Transporte Proteico , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...